Sistemi Intelligenti Avanzati
Corso di Laurea in Informatica, A.A. 2024-2025
Universita degli Studi di Milano

Search algorithms for planning

Matteo Luperto
Dipartimento di Informatica
matteo.luperto@unimi.it

mailto:matteo.luperto@unimi.it

Search

Setting:
* Agent
* Goal

* Problem Formulation
e A Set of Actions
e A Set of States

What we want to do?
Find a set of actions that achieve the goal

when no single action will do

Planning

Setting:

* Agent

 Goal

* Problem Formulation
* A Complex Set of Actions
* Preconditions
» Effects |
* A Complex Set of States
* Propositional Statements

AN

What we want to do?
Take advantage of the structure of a problem

to construct complex plans of actions

Search algorithms for Planning

e Search and Planning often addresses similar problems and there is
no clear distinction between them.

* On one hand, planning deals with problems where actions, states,
goals cannot be described in a compact way, to have an abstract
and high-level problem formulation.

* As an example, if the conditions can change planning methods are
more suited to adapt the plan.

* On the other hand, search algorithms are often used when it is
easier to describe the problem in a “mathematical” and compact
way.

* Overall, search and planning are deeply connected and overlapped,
and planning often requires some form of search and problem-
solving algorithms.

e Path-planning is one of those problem.

Discrete Search Problems: 8-Puzzle

72 4 1 2
5 6 3|1 4| 5
8 [3 | 1 6 | 7 | 8

 States: location of each digits in the eight tiles + blank one
* Initial State

* Goal State

e Actions: Left, Right, Up, Down

* Transition: given a state and an action, the resulting board

Discrete Search Problems: 8-Puzzle

72 4 1 2
5 6 3|1 4| 5
8 [3 | 1 6 | 7 | 8

 States: location of each digits in the eight tiles + blank one
* Initial State

* Goal State

e Actions: Left, Right, Up, Down

* Transition: given a state and an action, the resulting board
e Goal Test: if the states are equal to the goal state

e Cost: each movement costs 1, the lowest number of tile move the
lowest the cost

Search example 71214
5 6
8|31
71214 71214 7 4 712
5| 6 5| 6 5126 5[3
8|31 8|31 8|31 8

Expanding the current state by applying a legal action generating a
new set of states, then...

...following up one option and putting aside others in case the first
choice does not lead to a solution

State-based problem formulation

» State space defined as a set of nodes, each node represents a state;
we assume a finite state space (and discrete)

* For each state, we have set of actions that can be undertaken by the agent from
that state

* Transition model: given a starting state and an action, indicates an arrival state;
we assume no uncertainties, i.e., deterministic transitions and full observability

e Action costs: any transition has a cost, which we assume to be greater than a
positive constant (reasonable assumption, useful for deriving some properties of
the algorithms we discuss)

* |nitial state

e Goal State

Compact representation: state transition graph G=(V,E)
(We will use “state” and “node” as interchangeable terms)

Formally describing the desired solution

* Inthe problem formulation we need to formally describe the features of the
solution we seek

* Two (three) classes of problems:

feasibility optimality
EE}] Sl Sl Etﬁp 5] EE
L1 [= Bk = C] E -
T =
b {fE=TE = e | EEE) =
(approximation)
If at least a path to an

is there a path to

_ exit exists, what is the
an exit?

one with the minimum
number of turns?

—
§

Set of goal states, find any
sequence of actions (path)
from the initial state to a
goal state

Set of goal states, find the
sequence of actions (path) from
the initial state to a goal state that
has the minimum cost

Problem example

Consider a agent moving on a graph-represented environment:
e States: nodes of the graph, they represent physical locations

* Edges: represent connections between nearby locations or, equivalently,
movement actions

* Initial state: some starting location for the agent
Desired solution:

* Goal state(s): some location(s) to reach, ...
Find a path to the initial location to a goal one

Example: going home from the Celoria 18 with METRO

E: 5 % :; e WP TE AT WA v g IVOLG UUITUUT 9 v ’%:- :% % ’:é
I I = yia Valia7z® s 1 P B ‘Milano Lambrate
Via Vallazze Lambrate Fsﬂm re i€
a Upcycle Milano
9 Bike Café L ' Vi =
ttoria Bertame Q : | < 7 s
l Pam Milano Bazzini g a, ey, o <
‘ @ a8 3 =3 Z
< Oasi Village @ h‘ﬂa(dae\bc : . ¢
2 i : wis A y a ;
g . Piazza Carlo 2 Mio
g Centro Teatro Attivo a s Donegani §
s. Vietnamonamour e . E
8 i 2 Il Postino @
3/00, 2 Ristorante e B&B $ Supermercato 9 =
< 8 v ® Carrefour Express Q a
- SSo : Via Giuseppe Zanola - 8 r -4 a
] a = Q Piola Milanosport - Centro ~ Via Altonso €Ot
3 . Balneare Romano a
v o1 Avis Regionale 9 o QBirrlf:c;o Lambrate Golgi
Supermercato 9 @MTM teatro Leonardo Lombardia b
Carrefour Market B via Edoardo Bonard gy a =] Via Corfis Q Trattoria Sole
@ - B\(4 :
4 A a Zero-Gravity 9
[L”OQ =
""’a,of R | Sl / Politecnico Via Carlo Pascal
“op, / i ' Piazza di Milano L !
% <| B :
= I Leonardo 9 Crespi Sport Village
5 Via Olindo Guerrin ; s i et dg Vincir Campo Sportivo
= g Mario Giuriati]
c o]
g G 8
5 ® =
] " MOBA Mil e ¢ (=) iversita Deoli Studi £
< L a8 Universita Degli Studi g
a8 9 Di Milano... 3
QGrano e Caffe 1 3
1 5. Dipartimento di 9 g
c Informatica...
Fantamagus e 7; .
I g Fondazione IRCCS 9
Y 3 Istituto nazionale dei...
oAy g QMOGLYNET 9|pSAR Am

Dipartime(Gnranle

Example: going home from Celoria

g B E—_ g N NMARINT T T WA v § TIVOLLT UWUITUUT 3 v .%_ —% X
Via Vallazze Lambrate Fsmm
a8 Upcycle Milano ‘
9 Bike Cafe < . Via o
ttoria Bertameé 0 ! 1 = 0/
Pam Milano Bazzini e = O%Aw/
5 e a 7
} 5 =2
< Oasi Village @ 408
o
8 Centro Teatro Attivo
?3 Vietnamonamour, |
% s Ristorante e B&B Il Postino
N 9
”
s s 8 o
3 So : 13 Giuseppe Zanola & % a
3 a8 = 9 Piolz Milanosport - Centro
3 Balneare Romano a
Supermercato 9 QMTM teatro Leonardo
Carrefour Market 8 N~ Via Corfi
@ 8
o L’lol? '
0”:3,0"~ S - Politecnico Via Carlo Pascal
o | I i |Piazza di Milano 9
1 ® / _leonardo \
S o ey da\Vinci/= Campo Sportivo
-é Via Olindo Guerrini § = Mario Giuriati
: g |
3 >
- 4 [+
< MOBA M"a”OQ Universita Degli Studi
a8 9 Di Milgno...
QGrano eCaffe |
0 2 Dipartimento di 9
H Informatica...
2
Fantamagus Q i .
| S Fondazione IRCCS
3 i ionale dei...
v,o% 3 Istituto nazionale de LYNET
a8 o ‘

Dipartime(Snnale

18 with METRO

~Milano Lambrate

ED 1voiag uosseaep oped BIA

1pal,

(

E)
<

8\ §
a i
Mio

Q Trattoria Sole

Zero-Gravity 9

Crespi Sport Village

1U0Jad HOSSEAIRA O}eD BIA

Example: going home from Celoria 18 with METRO

Goal

Goal

Start

Problem example

Consider a mobile robot moving on a grid environment:
» States: cells in the map, they represent physical locations

* Edges: represent connections between nearby locations or, equivalently,
movement actions

* Initial state: some starting location for the robot
Desired solution:
* Goal state(s): some location(s) to reach

* Find a path to the initial location to a goal one

Problem Example

- HAEEEEEE EEE BN EEEEEEE

length: 81.18

| times 1_1 50ms

operations: 709
|

Problem Example {:}

| timel 1-1650ms
operations: 709
|

A solution

' length: Bt_lrfml!
| timer 3.0

operations: 709

And here? Changing a few tiles, different solution

I length: BE DmL
| timez 0.

operatlons 770

One problem, many possible ways of representing it

e NIARINT T Y TN WA v - VeI wuivun o ey B

: t Milano Lambrate
| Lambrate FSE@[Y]
Pam Milano Bazzini =
? a8 &
J Oﬁm\hllﬁno@ :

The quality of the solution and the choice of algorithms rely on a proper
problem formulation, with proper level of abstraction needed for the task
(not too many or too little details)

VBalneare Romano B
B
Avis Regionale 9 a8
Supermercato Q QMTM teatro Leonardo Lombardia
Carrefour Market T : - nB f it
a8 . a
a8 Zero-Gravity Q
Politecnico
Piazza di Milano
oS 9 Crespi Sport Village
L5 da Vinci Campo Sportivo
: Mario Giuriati
B a8

VOBA Mila a Universita Degli Studi
a8 Q Di Milano

i1 : Dipartimento di Q
Informatica
Fantamagus o L
Fondazione IRCCS
Istituto nazionale dei
il Q MOGLYNET Q;F,SAR A

Dipartime(Snnale

One problem, many possible ways of representing it

v

Pam Milano Bazzini

< Oasi Village @

Centro Teatro Attivo

Ristorant

Supermercato 9
Carrefour Market
a
e Piazza
) Leonardo
L da Vinci
S 5]
y B
8 m
W Gra e (
a
Fantamagus o

Milanosport - Centro
Balneare Romano

@MTM teatro Leonardo

Politecnico
di Milano

Dipartime(Gnnrale

T v : : 8
: : V B ‘Milano Lambrate
Lambrate FSE@[Y] (
a8
a8
a8
a8

Mio

A

Campo Sportivo
Mario Giuriati

w Universita Degli Studi ;
Di Milgno..

Dipartimento di
Informatica.

Fondazione IRCCS
Istituto jnazionale dei

What type of

representation?

With which granularity?
Shall | represent other
nearby stations (Loreto,
Udine?)

Shall I represent also the
bus stops?

Trams?

Main central stations?

All Milan city map?

Shall | represent all crossings
and traffic lights?

How about directions inside
the campus?

How about directions inside

the building?

One problem, many possible ways of representing it

v TPt TYUTYTS

: 8 M”Bjo Lamjprate What type Of

I - peyEEie Mt ‘ o representation?

Pgm Milgno Bagzini = : hd G rid map?
' 8 :
— : 1 @ ' id?
O45TViTage E * How big the grid-

wd © Which distance?

Riazza (arlo

Sthhinona ot - * Euclidean
diat | ti a8
1—Stupprmerdate Q;W 3 ° Manhattan
(Jarrefoyir Express .
] . - e ?
= ool B .
) 8 J IVia ilanosport - Centro
@l nears Romepo B * Shall I represent all crossings
pisfegole @ & Dol i1 and traffic lights?
permjercatol VITM teatrp Leonjardo Jombatdia
2 it ke~ g:; il el ot b * How about directions inside
= Z t [.J ' 4
s B | il e the campus? (shall | use a
Politecnido different grid Size?)
Pid C i i e
T o I T * eretpr qp « How about directions inside
d . .
2 Sy e s g || the building?

MOBR Mila A @ . Universita Dpgli Stydi
i8] O Di Mifano

‘ gCaiie \ 4
o Dipjartimepto di Q

Ipformdtica

Fanamagys Q
i Fo e IRCC

ypdazior

SttutonaZiornale ae

a8 i QM' GLYNET OiPS‘\R Am

Diphrtime§Ton, la

Problem specification

* How to specify a planning problem?

* First approach: provide the full state transition graph G (as in the previous
example)

* Most of the times this is not an affordable option due to the combinatorial
nature of the state space:

C> Iné
o ¥
Co foo-
Co B
Co @
Co fio-
C> ¥

E| « Chess board: approx. 10%’ states

S« Wecan specify the initial state and the transition
function in some compact form (e.g., set of rules to
generate next states)

id , “ ”

zve| © The planning problem “unfolds” as search progresses

)= 73
B per
fo- o

&
£

= e

4
=

* We need an efficient procedure for goal checking

General features of search algorithms

A search algorithm explores the state-transition graph G until it discovers the
desired solution

» feasibility: when a goal node is visited the path that led to that node is
returned R.0.B-0.T. Comics

* optimality: when a goal node is visited, if any other
possible path to that node has higher cost the path
that led to that node is returned

Given a state and the path followed to get there, the next node
to explore is chosen using a search strategy

"HIS PATH-PLANNING MAY BE

It does not suffice to visit a goal node, the algorithm has to SUB-ORTINALs BUT "3 (€00 FRAKHa"

reconstruct the path it followed to get there: it must keep
a trace of its search

Such a trace can be mapped to a subgraph of G, it is called search graph

how to evaluate a (search) algorithm?

* We can evaluate a search algorithm along different dimensions

Completeness:
If there is a solution, is the algorithm guaranteed to find it?
* Systematic:

If the state space is finite, will the algorithm visit all reachable state
(so finding a solution if a solution exists?)

Optimality:

does the strategy find an optimal solution?

Space complexity:

How much memory is needed to find a solution?

Time complexity:

How long does it takes?

(The above criteria are used to evaluate a broader class of algorithms)

Soundness

* Optimality: does the returned solution lead to a goal with minimum cost?
Maybe we are not always looking for the optimal solution...

...for some problems, we may look for other features

Soundness: If the algorithm returns a solution, is it compliant with the desired
features specified in the problem formulation?

* Example:
* Feasibility: does the returned solution lead to a goal?
e Optimality: does the returned solution lead to a goal with minimum cost?

(We may need other features from the algorithm e.g., approximation)

Completeness and the systematic property

If a solution exists, does the algorithm find it?

» Typically shown by proving that the search will/will not visit all states if given
enough time = systematic

 If the state-space is finite, ensuring that no redundant exploration occurs is
sufficient to make the search systematic.
* If the state space is infinite, we can ask if the search is systematic:
 If thereis a solution, the search algorithm must report it in finite time
* if the answer is no solution, it’s ok if it does not terminate but ...

... all reachable states must be visited in the limit: as time goes to infinity, all
states are visited — all reachable vertex is explored - (this definition is sound
under the assumption of countable state space)

Visual example

isthere a

route from
IN to OUT?

JNEETE

=

Visual example

-my

Complete / Systematic

1
=

JNEETE

I
-

k= hl__:l_'
— ||| L =
_II__
SIIEES eSS

» Searching along multiple trajectories (either concurrently or not), eventually covers all

the reachable space

Visual example

am)

n

Not complete / Not systematic

1

L

JNEETE

Il
ik

=

- L

—

» Searching along a single trajectory, eventually gets stuck in a dead end (or find a solution

if we are lucky)

Space and time complexity
* Space complexity: how does the amount of memory required by
the search algorithm grows as a function of the problem’s
dimension (worst case)?
e Time complexity: how does the time required by the search

algorithm grows as a function of the problem’s dimension (worst
case)?

* Asymptotic trend:
* We measure complexity with a function f(n) of the input size
* For analysis purposes, the “Big O” notation is convenient:

A function f(n) is O(g(n)) if 3k > 0,ng such that f(n) < kg(n) for n > ng

* An algorithm that is O(n?) is better than one that is O(n°)
* If g(n)is an exponential, the algorithm is not efficient

Running example

* To present the various search algorithms, we will use this problem instance as our
running example

State-transition graph:

Initial state: @

Desired solution: any path to goal state @

* It might be useful to think it as a map, but keep in mind that this interpretation does not
hold for every instance

Search algorithm definition

* The different search algorithms are substantially characterized by the answer they
provide to the following question:

° ° e ____________ _ Given what | searched so far,
where to search next?

(search strategy)

 The answer is encoded in a set of rules that drives the search and define its type, let’s
start with the simplest one

Depth-First Search (DFS)

Depth-First Search (DFS)

Depth-First Search (DFS)

Depth-First Search (DFS)

Depth-First Search (DFS)

Depth-First Search (DFS)

A

"\

B F
/N
®C D

A Depth-First Search (DFS) chooses the deepest node in the search tree
(How to break ties? For now, lexicographic order)

A dead end stopped the search, DFS seems not complete. Can we fix this?

Let’s endow our DFS with backtracking: a way to reconsider previously
evaluated decisions

Depth-First Search (DFS)

A

"\

B F
/N
®C D

A Depth-First Search (DFS) chooses the deepest node in the search tree
(How to break ties? For now, lexicographic order)

A dead end stopped the search, DFS seems not complete. Can we fix this?

Let’s endow our DFS with backtracking: a way to reconsider previously
evaluated decisions

Depth-First Search (DFS)

A

"\

B F
/N
®C D

A Depth-First Search (DFS) chooses the deepest node in the search tree
(How to break ties? For now, lexicographic order)

A dead end stopped the search, DFS seems not complete. Can we fix this?

Let’s endow our DFS with backtracking: a way to reconsider previously
evaluated decisions

Depth-First Search (DFS)

A

"\

B F
/N
®C D

A Depth-First Search (DFS) chooses the deepest node in the search tree
(How to break ties? For now, lexicographic order)

A dead end stopped the search, DFS seems not complete. Can we fix this?

Let’s endow our DFS with backtracking: a way to reconsider previously
evaluated decisions

Depth-First Search (DFS)

A
/\ /\
B F B
N /N
®C D - C

A Depth-First Search (DFS) chooses the deepest node in the search tree
(How to break ties? For now lexicographic order)

A dead end stopped the search, DFS seems not complete. Can we fix this?

Let’s endow our DFS with backtracking: a way to reconsider previously
evaluated decisions

Depth-First Search (DFS)

A
/\ /\
B F B
N /N
®C D - C

A Depth-First Search (DFS) chooses the deepest node in the search tree
(How to break ties? For now lexicographic order)

A dead end stopped the search, DFS seems not complete. Can we fix this?

Let’s endow our DFS with backtracking: a way to reconsider previously
evaluated decisions

Depth-First Search (DFS)

* A Depth-First Search (DFS) chooses the deepest node in the search tree
(How to break ties? For now lexicographic order)

A dead end stopped the search, DFS seems not complete. Can we fix this?

* Let’s endow our DFS with backtracking: a way to reconsider previously
evaluated decisions

Depth-First Search (DFS)

A
/\ /\
B F B
N VN
®C D - C

F
A Depth-First Search (DFS) chooses the deepest node in the search tree
(How to break ties? For now lexicographic order) G
A dead end stopped the search, DFS seems not complete. Can we fix this?
©E

Let’s endow our DFS with backtracking: a way to reconsider previously
evaluated decisions

Solution: (A->B->D->F->G->E)

Depth-First Search (DFS) and Loops

* DFS with loops —> non systematic / complete
* We want to avoid loops on the same branch
(loops are redundant paths)

Depth-First Search (DFS)
* DFS with loops removal and BT is sound and complete (for finite spaces)

e Call b the maximum branching factor, i.e., the maximum number of actions
available in a state

* Call d the maximum depth of a solution, i.e., the maximum number of actions
in a path

* Space complexity: O(d)

* Time complexity: 1 4+ b+ b* + ... + b% = O(b%)

Breadth-First Search (BFS)

Breadth-First Search (BFS)

Breadth-First Search (BFS)

Breadth-First Search (BFS)

Breadth-First Search (BFS)

Breadth-First Search (BFS)

Breadth-First Search (BFS)

Breadth-First Search (BFS)

Breadth-First Search (BFS)

Solution: (A->F->G->E)

Breadth-First Search (BFS)

A
/\F
B
PN TN
®C D D G

Solution: (A->F->G->E)

* A Breadth-First Search (BFS) chooses the shallowest node, thus exploring in a level-
by-level fashion

* It has a more conservative behavior and does not need to reconsider decisions
* Call ¢ the depth of the shallowest solution (in general ¢ < d)

* Space complexity: O(b?)

* Time complexity: O(b?)

Redundant paths

* Both DFS and BFS visited some nodes multiple times (avoiding loops prevents
this to happen only within the same branch)

* In general, this does not seem very efficient. Why? /\

B\ - F
\ e /
/\\ ///\ F /E;
®C D \—\::/—/—_ D s\\ //. G //
F-'G->B-—-G/ D OF

©E

* |dea: discard a newly generated node if already present somewhere on the
tree, we can do this with an enqueued list

DFS with Enqueued List

DFS with Enqueued List

DFS with Enqueued List

DFS with Enqueued List

DFS with Enqueued List

DFS with Enqueued List

* Node F ha already been “enqueued”
on the tree, by discarding it we
prune a branch of the tree

DFS with Enqueued List

* Node F ha already been “enqueued”
on the tree, by discarding it we
prune a branch of the tree

DFS with Enqueued List

* Node F ha already been “enqueued”
on the tree, by discarding it we
prune a branch of the tree

BFS with Enqueued List

BFS with Enqueued List

BFS with Enqueued List

BFS with Enqueued List

BFS with Enqueued List

BFS with Enqueued List

BFS with Enqueued List

BFS with Enqueued List

Implementation

 The implementation of the previous algorithms is based on two data structures:
A queue F (Frontier), elements ordered by priority, a selection consumes the
element with highest priority
* Alist EL (Enqueued List, nodes that have already been put on the tree)

 The frontier F contains the terminal nodes of all the paths currently under exploration on
the tree

A
B P/
\\ /\ ///
\\ C D ,’/

* The frontier separates the explored part of the state space from the unexplored part
* Inorderto reach a new unexplored state, we need to pass from the frontier (separation

property)

Implementation

. If Fis implemented as a
LIFO (Last In First Out)

gueue we have a DFS
|n|t|aI|ze F with the select from F
starting node and extend |f F is implemented a
FIFO (First In First Out)
gueue we have a BFS
any new \

path?
addto F]

&

solved <—yes

<
4"l||‘||l"}(m

m
'S ™ e ™

add to
enqueued list
The goal check is no
performed as [
soon as a node is ren
Y
enqueued? no

generated

ye54>[discard]

Search for the optimal solution

Now we assume to be interested in the solution with minimum cost (not just any
path to the goal, but the cheapest possible)

To devise an optimal search algorithm we take the moves from BFS. Why it seems
reasonable to do that?

We generalize the idea of BFS to that of Uniform Cost Search (UCS)

BFS proceeds by depth levels, UCS does that by cost levels (as a consequence, if costs
are all equal to some constant BFS and UCS coincide)

Cost accumulated on a path from the start nodetov: g(v) (we should include a
dependency on the path, but it will always be clear from the context)

For now let’s remove the enqueued list and the goal checking as we know it

Uniform Cost Search (UCS)

Uniform Cost Search (UCS)

0A

Uniform Cost Search (UCS)

0A

6 F

Uniform Cost Search (UCS)

12C 8D

Uniform Cost Search (UCS)

12C 8D 9D 11G

Uniform Cost Search (UCS)

12C 8D 9D 11G

Uniform Cost Search (UCS)

9D 11G

2\

11 F 12G 12B 113G

N N
12C 8D
N\

Uniform Cost Search (UCS)

Uniform Cost Search (UCS)

Uniform Cost Search (UCS)

Uniform Cost Search (UCS)

Uniform Cost Search (UCS)

0A
5B 6F
/\ /\
12C 8D 9D 11G

N AN N

12B 133G 15D 14E

o

16G 15E 19C

Uniform Cost Search (UCS)

0A
5B 6F
////\\\\\ ////A\\\\\
12C 8D 9D 11G

° N N

11 F 12G 12B 13G 15D 14E

o

16G 15E 19C 16E

by

Uniform Cost Search (UCS)

0A
5B 6F
////\\\\\ ////A\\\\\
12C 8D 9D 11G

° N N

11 F 12G 12B 13G 15D

o ©

16G 15E 19C 16E

by

Uniform Cost Search (UCS)

0A
5B 6F
/\ /\
12C 8D 9D 11G

N AN N

2B 13G 15D 14

o ©

16G 15E 19C 16E

* Have we found the optimal path to the goal? In this problem instance, we can answer
yes by inspecting the graph

 How about larger instances? Can we prove optimality?

e Actually, we can prove a stronger claim: every time UCS selects for the first time a node
for expansion, the associated path leading to that node has minimum cost

Optimality of UCS

Hypotheses:

1. UCS selects from the frontier a node V that has
been generated through a path p

2. pisnotthe optimal pathtoV

Frontier

Given 2 and the frontier separation property, we

)
B .
........
B .
.............

know that there must exist a node X on the frontier, \)
generated through a path p’; that is on the optimal \\ o
path p’#p to V; let assume p’ = p’; + p’, T ”p/2

c(p’) = c(p]) + c(py) < ¢(p) since, from Hp, p’ is optimal
< ¢(p}) +c(py) < c(p) since costs are positive
<

/
1
c(p) X would have been chosen before V, then 1 is false

Optimality of UCS

If when we select for the first time we discover the optimal path, there is no reason to
select the same node a second time: extended list

Every time we select a node for extension:
* If the node is already in the extended list we discard it
* Otherwise we extend it and we put it the extended list

* (Warning: we are not using an enqueued list, it would actually make the search not
sound!)

UCS with extended list

UCS with extended list

0A

UCS with extended list

0A

6 F

UCS with extended list

12C 8D

UCS with extended list

12C 8D 9D 11G

UCS with extended list

12C 8D 9D 11G

UCS with extended list

12C 8D 9D 11G

UCS with extended list

12C 8D 9D 11G

UCS with extended list

UCS with extended list

11 F 12G 15D 14E

UCS with extended list

11 F 12G 15D 14E

UCS with extended list

0A

/\

* Thanks to the extended list we can prune two branches

5B 6 F
S
12C 8D 9D 11G
@ s VAN
11 F 12G 15D 14

Implementation

yes
[nitis?gft?ng \;v(i;[g;he} »{ F empty? n0*>‘ select from F]
Y ™
discard <€—vyes already
\ J
's A
add all new
paths to F no
. J
F is implemented as a <
H i extend, add to
cost-sorted (increasing) Xtend, ada & solved
list queue - g

The goal check is done when
the node is selected (not
when is generated)

e (Question: is this search informed?

Discrete Search Problems: 8-Puzzle

72 4 1 2
5 6 3|1 4| 5
8 [3 | 1 6 | 7 | 8

 States: location of each digits in the eight tiles + blank one
* Initial State

* Goal State

e Actions: Left, Right, Up, Down

* Transition: given a state and an action, the resulting board
e Goal Test: if the states are equal to the goal state

e Cost: each movement costs 1, the lowest number of tile move the
lowest the cost

Discrete Search Problems: 8-Puzzle

72 4 1 2
5 6 3|1 4| 5
8 [3 | 1 6 | 7 | 8

Start Staie Goal State

* Question: are all states equal?

Example: going home from the CS department with METRO

— - e MR T T W Y DI IVOTET UWVIUW 9 v y n
= : C - = s

The cost to reach the two nodes starting from the initial node is the same; but
are the two nodes equally promising to reach the goal?

a8
2

< Oasi Village @

Mio
Centro Teatro Attivo o
Vietnamonamou =
A Ristorante e B&B Il a8
G, 5
< Y ¢ T
5 9, a Via.Gilsenpe Zan () 1
= © B = Piol e P =
5 a8 a8 1013 Milanosport - Centro
8 Balneare Romano a
irr ambrate Golgi
Supermercato Q -~
Carrefour Market W Tratt
a8
Zero-Gravity 9
Politecnico ca
< Piazza di Milano
5 Vesnardo Crespi Sport Village
o da Vinci Campo Sportivo
Q Mario Giuriati
3A | Universita Degli Studi
=P Q Di Milgno..
: (T’P
o Dipartimento di Q
Informatica..
A
Fantamagus o
I Fondazione IRCCS
! Istituto jnazionale dei °
A MQGLYNET QIPSAR Am

Dipartime(Snnale

Informed vs non-informed search

e Besides its own rules, any search algorithm decides where to search next by leveraging
some knowledge

* Non-informed search uses only knowledge specified at problem-definition time (e.g.,
goal and start nodes, edge costs), just like we saw in the previous examples

* Aninformed search might go beyond such knowledge
* |dea: using an estimate of how far a given node is from the goal

* Such an estimate is often called a heuristic

Estimate of the cost of the optimal path from node v to the goal: h(v)

A*
* The informed version of UCS is called A*

* Very popular search algorithm

* It was born in the early days of mobile robotics when, in 1968, Nilsson, Hart, and
Raphael had to face a practical problem with Shakey (one of the ancestors of today’s
mobile robots)

| A

T ~Eo |

L~
1]

CASTER
WHEEL

MOTOR by

~ | Wikipedia SRI Robotics

1 PN EESSS S

A*

 The idea behind A* is simple: perform a UCS, but instead of considering accumulated
costs consider the following:
Heuristic
(“cost-to-go”)

f(n) = g(n) + h(n)

T

Cost accumulated
on the path ton
(“cost-to-come”)

* To guarantee that the search is sound and complete we need to require that the
heuristic is admissible: it is an optimistic estimate or, more formally:

h(n) < Cost of the minimum path from n to the goal

* |f the heuristic is not admissible we might discard a path that could actually turn out
to be better that the best candidate found so far

A*

h(v)

S~ = MmO~ ™

node v

<P OAH~D

A*

0+10=10

SIS = mo i~
>
)
MABCDEFG
a

A*

A
0+10=10
B F
5+7=12 6+7=13

node v | h(v)
A 10
B 7
C 1
D 3
E 0
F 7
G 2

A*

A
0+10=10
B F
5+7=12 6+7=13
C D
5+7+1=13 5+3+3=11
node v | h(v)

A 10
B 7
C 1

D 3
E 0
F 7
G 2

A*

A
0+10=10
B F
5+7=12 6+7=13
C D
5+7+1=13 5+3+3=11

node v | h(v) /\
A 10

B 7 F G

1 5+3+3+7=18 5+3+4+2=14

3

QHE DA

A*

A
0+10=10
B F
5+7=12 6+7=13
C D
5+7+1=13 5+3+3=11
node v | h(v) ® /\
A 10
B 7 F G
1 5+3+3+7=18 5+3+4+2=14
3

QHHTAQ
CIEN I

A*

A
0+10=10
B F
5+7=12 6+7=13
C D D G
5+7+1=13 5+3+3=11 6+3+3=12 6+5+2=13
node v | h(v) ® /\
A 10
B 7 F G
1 5+3+3+7=18 5+3+4+2=14
3

QHE DA

A*

A
0+10=10
B F
5+7=12 6+7=13
C D D G
5+7+1=13 5+3+3=11 6+3+3=12 6+5+2=13
node v | h(v) ® /\
A 10
B 7 F G
1 5+3+3+7=18 5+3+4+2=14
3

QHE DA

A*

0+10=10

B F

5+7=12 6+7=13
C D D G
54741213 5+3+3=11 6+3+3=12 6+5+2=13
’1/“) ® /\ /\
0
F G D E

5+3+3+7=18 5+3+4+2=14 6+5+4+3=18 6+5+3+0=14

node v | h(
1

@ >

W = =3

QHHTAQ
CIEN I

A*

A
0+10=10
B F
5+7=12 6+7=13
C D D G
5+7+1=13 5+3+3=11 6+3+3=12 6+5+2=13
node v | h(v) ® /\ /\

A 10
B 7 F G D E

1 5+3+3+7=18 5+3+4+2=14 6+5+4+3=18 6+5+3+0=14

3 @

QHHTAQ
CIEN I

A*

* Problem: if we work with an extended list, admissibility is not enough!

e Let’s consider this “pathological” instance:

node v | h(v)

100
0

QHmEHDODQW>

A*

* Problem: if we work with an extended list, admissibility is not enough!

e Let’s consider this “pathological” instance:
A

0+10=10

node v | h(v)

100
0

QHmEHDODQW>

A*

* Problem: if we work with an extended list, admissibility is not enough!

e Let’s consider this “pathological” instance:

node v

QHmEHDODQW>

100
0

A

0+10=10

/\

B

5+0=5

F

6+100=106

A*

* Problem: if we work with an extended list, admissibility is not enough!

e Let’s consider this “pathological” instance:

node v

QHmEHDODQW>

100
0

A
0+10=10
B F
5+0=5 6+100=106
C D
5+7+1=13 5+3+0=8

‘g\=k

* Problem: if we work with an extended list, admissibility is not enough!

e Let’s consider this “pathological” instance:

node v

QHmEHDODQW>

100
0

A
0+10=10
B F
5+0=5 6+100=106
C D
5+7+1=13 5+3+0=8
F G

5+3+3+100=111 5+3+4+0=12

‘g\=k

* Problem: if we work with an extended list, admissibility is not enough!

e Let’s consider this “pathological” instance:

node v

QHmEHDODQW>

100
0

A
0+10=10
B F
5+0=5 6+100=106
C D
5+7+1=13 5+3+0=8
F G

5+3+3+100=111 5+3+4+0=12

E

5+3+4+100+0=112

A*

* Problem: if we work with an extended list, admissibility is not enough!

e Let’s consider this “pathological” instance:

node v

QHmEHDODQW>

100
0

A
0+10=10
B F
5+0=5 6+100=106
C D
5+7+1=13 5+3+0=8
& /\
F G

5+3+3+100=111 5+3+4+0=12

E

5+3+4+100+0=112

A*

* Problem: if we work with an extended list, admissibility is not enough!
e Let’s consider this “pathological” instance:

0+10=10

B F

5+0=5 6+100=106
/\ /\
C D D G

5+7+1=13 5+3+0=8 6+3+3=12 6+5+2=13
F G

5+3+3+100=111 5+3+4+0=12

node v | h(v)

1 E

5+3+4+100+0=112

100
0

QHmEHDODQW>

A*

* Problem: if we work with an extended list, admissibility is not enough!
e Let’s consider this “pathological” instance:

0+10=10

B F

5+0=5 6+100=106
/\ %\
C D D G

5+7+1=13 5+3+0=8 6+3+3=12 6+5+2=13
F G

5+3+3+100=111 5+3+4+0=12

node v | h(v)

1 E

5+3+4+100+0=112

100
0

QHmEHDODQW>

A*

* Problem: if we work with an extended list, admissibility is not enough!
e Let’s consider this “pathological” instance:

0+10=10

B F

5+0=5 6+100=106
PN <
C D D G

5+7+1=13 5+3+0=8 6+3+3=12 6+5+2=13
F G

5+3+3+100=111 5+3+4+0=12

node v | h(v)

1 E

5+3+4+100+0=112

100
0

QHmEHDODQW>

A*

* Problem: if we work with an extended list, admissibility is not enough!
e Let’s consider this “pathological” instance:

0+10=10

B F

5+0=5 6+100=106
PN <
C D D G

5+7+1=13 5+3+0=8 6+3+3=12 6+5+2=13
F G

5+3+3+100=111 5+3+4+0=12

node v | h(v)

1 E

5+3+4+100+0=112

100
0

QHmEHDODQW>

‘g\ﬂ=

Problem: if we work with an extended list, admissibility is not enough!

Let’s consider this “pathological" instance:

node v

QHmEHDODQW>

100
0

B

5+0=5

7

0+10=10

F

6+100=106

D

5+7+1=13 5+3+0=8 6+3+3=12

@ N\
F G

5+3+3+100=111

5+3+4+0=12

E

5+3+4+100+0=112

© A

<

G

6+5+2=13

A*

We need to require a stronger property: consistency

For any connected nodes u and v: h(v) < c(v,u) + h(u)

c(v,u)

node v | h(v
1

QEHE OO

-~ -
e -

Optimality of A*
f(v) =g(v)+ h(v)

flu) = g(u) + h(u) = g(v) + c(v,u) + h(u) = g(v) + h(v)

consistency
f(u) > f(’U) —— fis non-decreasing along any search trajectory

Hypotheses:
1. A* selects from the frontier a node G that

has been generated through a path p
2. pisnotthe optimal pathto G

Frontier

Given 2 and the frontier separation property, we
know that there must exist a node X on the
frontier that is on a better path to G N /

b
. .
,,,,,
.....

...............

fis non-decreasing: f(G) > f(X)
When A* selects a node for expansion, it
A* selected G: f(G) < f(X) discovers the optimal path to that node

Building good heuristics

* A “larger” heuristic is better usually than a smaller one. The trivial heuristic is h(v) = 0.

 The “larger heuristics are better” principle is not a methodology to define a good
heuristic

* Such a task, seems to be rather complex: heuristics deeply leverage the inner structure
of a problem and have to satisfy a number of constraints (admissibility, consistency,
efficiency) whose guarantee is not straightforward

* When we adopted the straight-line distance in our route finding examples, we were sure
it was a good heuristic

* Would it be possible to generalize what we did with the straight-line distance to define a
method to compute heuristics for a problem?

* Good news: the answer is yes

Evaluating heuristics

* How to evaluate if an heuristic is good?

h(v) =0 h(v) = g*(v)
I I
| ¢ |
Trivial Trivial
heuristic problem

We'd like to push
this point to the
right. Why?

 A*will expand all nodes v such that: f(v) < g*(goal) — h(v) < g*(goal) — g(v)
* If,forany nodev hi(v) < ho(v)

then A* with h, will not expand more nodes than A* with h,, in general h, is better
(provided that is consistent and can be computed by an efficient algorithm)

* If we have two consistent heuristics h; and h, we can define

hs(v) = max{hs(v), hi(v)}

Relaxed problems

* Given a problem P, a relaxation of P is an easier version of P where some constraints
have been dropped

P P
Original ~ Removing constraints Re|axed
problem > problem

g(v,u) < g(v, u)

T~

Costsin the Costsin the
relaxation original problem

* In our route finding problems removing the constraint that movements should be over
roads (links) means that some costs pass from an infinite value to a finite one (the
straight-line distance)

Relaxed problems

* ldea:
Define a Apply A* to every Set h(v) = h*(v) inthe
A~ e ~ >
relaxation of P: P node and get h*(v) original problem and run A*

* We can easily define a problem relaxation, it’s just matter of removing
constraints/rewriting costs

* But what happens to soundness and completeness of A*?

g(v,u) + h(u) From our idea
@(‘Ua U) < 9(717 U) From the definition of relaxation

h(v) < g(v,u) 4+ h(u) his consistent

Heuristics example: 8-puzzle

* How to evaluate if an heuristic is good?

/72| 4 1 2

5 6 3| 4|5

8 3 | 1 6 | 7| 8
Start State Goal State

* hy(v) the number of misplaced tiles

* h,(v) sum of distances of tiles from their goal destination
(Manhattan Distance)

« hi(v) =8, h,(v) =18, h.(v) =26
* Both heuristics are admissible; the second one is “higher”, so is close to the
actual cost of the optimal path. So it is a better heuristic.

* If we have two consistent heuristics h; and h, we can define

hs(v) = max{hs(v), hi(v)}

Heuristics example: 8-puzzle

Search Cost (nodes generated) Effective Branching Factor

d IDS A*(hy) A*(hg) IDS A*(h1) A*(ho)

2 10 6 6 2.45 1.79 1.79
4 112 13 12 2.87 1.48 1.45

6 680 20 18 2.73 1.34 1.30

8 6384 39 25 2.80 1.33 1.24
10 47127 93 39 2.79 1.38 1.22
12 || 3644035 227 73 2.78 1.42 1.24
14 - 539 113 - 1.44 1.23
16 - 1301 211 - 1.45 1.25
18 - 3056 363 — 1.46 1.26
20 - 7276 676 — 1.47 1.27
22 - 18094 1219 — 1.48 1.28
24 - 39135 1641 - 1.48 1.26

* hy(v) the number of misplaced tiles

* h,(v) sum of distances of tiles from their goal destination
(Manhattan Distance)

 How to evaluate an heuristic? Compute several instances of the problem and compute the
effective branching factor
(the number of branches expanded by the search strategy during search)
In the table we tested 1000+ instances of the problem.

* h,(v) dominates h;(v) and is 50k better wrt IDS with d=12

Heuristics example: 8-puzzle

* How to evaluate if an heuristic is good?

/72| 4 1 2

5 6 3| 4|5

8 | 3] 1 6 7 | 8
Start State Goal State

Remember that the relaxed problem adds edges to the state space
e any optimal solution in the original problem is, by definition,
also a solution in the relaxed problem;
* however the relaxed problem may have better solutions if the added edges provide

short cuts
Hence, the cost of an optimal solution to a relaxed problem is an admissible heuristic

for the original problem.

Furthermore, because the derived heuristic is an exact cost for the relaxed problem,
it must obey the triangle inequality and is therefore consistent

Heuristics example: 8-puzzle

* How to evaluate if an heuristic is good?

/72| 4 1 2

5 6 3| 4|5

8 | 3] 1 6 7 | 8
Start State Goal State

How to generate heuristics? We can remove rules / costraints

8:puzzle rules:
A tile can move from square A to square B if:
A is horizontally or vertically adjacent to B and B is blank.

we can generate three relaxed problems by removing one or both of the conditions:
(a) A tile can move from square A to square B if A is adjacent to B.

(b) A tile can move from square A to square B if B is blank.

(c) A tile can move from square A to square B.

References

* Russel S., Norvig P, Artificial Intelligence, a Modern Approach, Il ED

* LaValle, SM., Planning Algorithms
http://lavalle.pl/planning/

e https://qiao.github.io/PathFinding.js/visual/

* https://www.redblobgames.com/pathfinding/a-
star/introduction.html

http://lavalle.pl/planning/
https://qiao.github.io/PathFinding.js/visual/
https://www.redblobgames.com/pathfinding/a-star/introduction.html
https://www.redblobgames.com/pathfinding/a-star/introduction.html

Sistemi Intelligenti Avanzati
Corso di Laurea in Informatica, A.A. 2024-2025
Universita degli Studi di Milano

Search algorithms for planning

Matteo Luperto
Dipartimento di Informatica
matteo.luperto@unimi.it

mailto:matteo.luperto@unimi.it

	Slide 1
	Slide 2: Search
	Slide 3: Planning
	Slide 4: Search algorithms for Planning
	Slide 5: Discrete Search Problems: 8-Puzzle
	Slide 6: Discrete Search Problems: 8-Puzzle
	Slide 7: Search example
	Slide 8: State-based problem formulation
	Slide 9: Formally describing the desired solution
	Slide 10: Problem example
	Slide 11: Example: going home from the Celoria 18 with METRO
	Slide 12: Example: going home from Celoria 18 with METRO
	Slide 13: Example: going home from Celoria 18 with METRO
	Slide 14: Problem example
	Slide 15: Problem Example
	Slide 16: Problem Example
	Slide 17: A solution
	Slide 18: And here? Changing a few tiles, different solution
	Slide 19: One problem, many possible ways of representing it
	Slide 20: One problem, many possible ways of representing it
	Slide 21: One problem, many possible ways of representing it
	Slide 22: Problem specification
	Slide 23: General features of search algorithms
	Slide 24: how to evaluate a (search) algorithm?
	Slide 25: Soundness
	Slide 26: Completeness and the systematic property
	Slide 27: Visual example
	Slide 28: Visual example
	Slide 29: Visual example
	Slide 30: Space and time complexity
	Slide 31: Running example
	Slide 32: Search algorithm definition
	Slide 33: Depth-First Search (DFS)
	Slide 34: Depth-First Search (DFS)
	Slide 35: Depth-First Search (DFS)
	Slide 36: Depth-First Search (DFS)
	Slide 37: Depth-First Search (DFS)
	Slide 38: Depth-First Search (DFS)
	Slide 39: Depth-First Search (DFS)
	Slide 40: Depth-First Search (DFS)
	Slide 41: Depth-First Search (DFS)
	Slide 42: Depth-First Search (DFS)
	Slide 43: Depth-First Search (DFS)
	Slide 44: Depth-First Search (DFS)
	Slide 45: Depth-First Search (DFS)
	Slide 46: Depth-First Search (DFS) and Loops
	Slide 47: Depth-First Search (DFS)
	Slide 48: Breadth-First Search (BFS)
	Slide 49: Breadth-First Search (BFS)
	Slide 50: Breadth-First Search (BFS)
	Slide 51: Breadth-First Search (BFS)
	Slide 52: Breadth-First Search (BFS)
	Slide 53: Breadth-First Search (BFS)
	Slide 54: Breadth-First Search (BFS)
	Slide 55: Breadth-First Search (BFS)
	Slide 56: Breadth-First Search (BFS)
	Slide 57: Breadth-First Search (BFS)
	Slide 58: Redundant paths
	Slide 59: DFS with Enqueued List
	Slide 60: DFS with Enqueued List
	Slide 61: DFS with Enqueued List
	Slide 62: DFS with Enqueued List
	Slide 63: DFS with Enqueued List
	Slide 64: DFS with Enqueued List
	Slide 65: DFS with Enqueued List
	Slide 66: DFS with Enqueued List
	Slide 67: BFS with Enqueued List
	Slide 68: BFS with Enqueued List
	Slide 69: BFS with Enqueued List
	Slide 70: BFS with Enqueued List
	Slide 71: BFS with Enqueued List
	Slide 72: BFS with Enqueued List
	Slide 73: BFS with Enqueued List
	Slide 74: BFS with Enqueued List
	Slide 75: Implementation
	Slide 76: Implementation
	Slide 80: Search for the optimal solution
	Slide 81: Uniform Cost Search (UCS)
	Slide 82: Uniform Cost Search (UCS)
	Slide 83: Uniform Cost Search (UCS)
	Slide 84: Uniform Cost Search (UCS)
	Slide 85: Uniform Cost Search (UCS)
	Slide 86: Uniform Cost Search (UCS)
	Slide 87: Uniform Cost Search (UCS)
	Slide 88: Uniform Cost Search (UCS)
	Slide 89: Uniform Cost Search (UCS)
	Slide 90: Uniform Cost Search (UCS)
	Slide 91: Uniform Cost Search (UCS)
	Slide 92: Uniform Cost Search (UCS)
	Slide 93: Uniform Cost Search (UCS)
	Slide 94: Uniform Cost Search (UCS)
	Slide 95: Uniform Cost Search (UCS)
	Slide 96: Optimality of UCS
	Slide 97: Optimality of UCS
	Slide 98: UCS with extended list
	Slide 99: UCS with extended list
	Slide 100: UCS with extended list
	Slide 101: UCS with extended list
	Slide 102: UCS with extended list
	Slide 103: UCS with extended list
	Slide 104: UCS with extended list
	Slide 105: UCS with extended list
	Slide 106: UCS with extended list
	Slide 107: UCS with extended list
	Slide 108: UCS with extended list
	Slide 109: UCS with extended list
	Slide 110: Implementation
	Slide 112: Discrete Search Problems: 8-Puzzle
	Slide 113: Discrete Search Problems: 8-Puzzle
	Slide 114: Example: going home from the CS department with METRO
	Slide 115: Informed vs non-informed search
	Slide 116: A*
	Slide 117: A*
	Slide 118: A*
	Slide 119: A*
	Slide 120: A*
	Slide 121: A*
	Slide 122: A*
	Slide 123: A*
	Slide 124: A*
	Slide 125: A*
	Slide 126: A*
	Slide 127: A*
	Slide 128: A*
	Slide 129: A*
	Slide 130: A*
	Slide 131: A*
	Slide 132: A*
	Slide 133: A*
	Slide 134: A*
	Slide 135: A*
	Slide 136: A*
	Slide 137: A*
	Slide 138: A*
	Slide 139: A*
	Slide 140: A*
	Slide 141: Optimality of A*
	Slide 142: Building good heuristics
	Slide 143: Evaluating heuristics
	Slide 144: Relaxed problems
	Slide 145: Relaxed problems
	Slide 146: Heuristics example: 8-puzzle
	Slide 147: Heuristics example: 8-puzzle
	Slide 148: Heuristics example: 8-puzzle
	Slide 149: Heuristics example: 8-puzzle
	Slide 150: References
	Slide 151

