
Sistemi Intelligenti Avanzati
Corso di Laurea in Informatica, A.A. 2024-2025

Università degli Studi di Milano

Search algorithms for planning
Matteo Luperto

Dipartimento di Informatica
matteo.luperto@unimi.it

mailto:matteo.luperto@unimi.it

Search

Setting:

• Agent

• Goal

• Problem Formulation
• A Set of Actions

• A Set of States

What we want to do?

Find a set of actions that achieve the goal

when no single action will do

S

G

A

B

C

D

E

F

H I

Setting:

• Agent

• Goal

• Problem Formulation
• A Complex Set of Actions

• Preconditions

• Effects

• A Complex Set of States

• Propositional Statements

What we want to do?

Take advantage of the structure of a problem

to construct complex plans of actions

Planning

Search algorithms for Planning

• Search and Planning often addresses similar problems and there is
no clear distinction between them.

• On one hand, planning deals with problems where actions, states,
goals cannot be described in a compact way, to have an abstract
and high-level problem formulation.

• As an example, if the conditions can change planning methods are
more suited to adapt the plan.

• On the other hand, search algorithms are often used when it is
easier to describe the problem in a “mathematical” and compact
way.

• Overall, search and planning are deeply connected and overlapped,
and planning often requires some form of search and problem-
solving algorithms.

• Path-planning is one of those problem.

Discrete Search Problems: 8-Puzzle

• States: location of each digits in the eight tiles + blank one

• Initial State

• Goal State

• Actions: Left, Right, Up, Down

• Transition: given a state and an action, the resulting board

Discrete Search Problems: 8-Puzzle

• States: location of each digits in the eight tiles + blank one

• Initial State

• Goal State

• Actions: Left, Right, Up, Down

• Transition: given a state and an action, the resulting board

• Goal Test: if the states are equal to the goal state

• Cost: each movement costs 1, the lowest number of tile move the
lowest the cost

Expanding the current state by applying a legal action generating a
new set of states, then…

…following up one option and putting aside others in case the first
choice does not lead to a solution

7 2 4

5 6

8 3 1

7 2 4

5 6

8 3 1

7 2 4

5 6

8 3 1

7 4

5 2 6

8 3 1

7 2 4

5 3 6

8 1

Search example

State-based problem formulation

• State space defined as a set of nodes, each node represents a state;
we assume a finite state space (and discrete)

• For each state, we have set of actions that can be undertaken by the agent from
that state

• Transition model: given a starting state and an action, indicates an arrival state;
we assume no uncertainties, i.e., deterministic transitions and full observability

• Action costs: any transition has a cost, which we assume to be greater than a
positive constant (reasonable assumption, useful for deriving some properties of
the algorithms we discuss)

• Initial state

• Goal State

Compact representation: state transition graph G=(V,E)
 (We will use “state” and “node” as interchangeable terms)

Formally describing the desired solution

• In the problem formulation we need to formally describe the features of the
solution we seek

• Two (three) classes of problems:

feasibility

is there a path to
an exit?

Set of goal states, find any
sequence of actions (path)
from the initial state to a
goal state

If at least a path to an
exit exists, what is the
one with the minimum
number of turns?

optimality

Set of goal states, find the
sequence of actions (path) from
the initial state to a goal state that
has the minimum cost

(approximation)

Problem example

Consider a agent moving on a graph-represented environment:

• States: nodes of the graph, they represent physical locations

• Edges: represent connections between nearby locations or, equivalently,
movement actions

• Initial state: some starting location for the agent

Desired solution:

• Goal state(s): some location(s) to reach, …
Find a path to the initial location to a goal one

Example: going home from the Celoria 18 with METRO

Example: going home from Celoria 18 with METRO

Start

Goal

Example: going home from Celoria 18 with METRO

Goal

Problem example

Consider a mobile robot moving on a grid environment:

• States: cells in the map, they represent physical locations

• Edges: represent connections between nearby locations or, equivalently,
movement actions

• Initial state: some starting location for the robot

Desired solution:

• Goal state(s): some location(s) to reach

• Find a path to the initial location to a goal one

Problem Example

Problem Example

A solution

And here? Changing a few tiles, different solution

One problem, many possible ways of representing it

The quality of the solution and the choice of algorithms rely on a proper
problem formulation, with proper level of abstraction needed for the task

(not too many or too little details)

One problem, many possible ways of representing it

What type of
representation?
• With which granularity?
• Shall I represent other

nearby stations (Loreto,
Udine?)

• Shall I represent also the
bus stops?

• Trams?
• Main central stations?
• All Milan city map?
• Shall I represent all crossings

and traffic lights?
• How about directions inside

the campus?
• How about directions inside

the building?

One problem, many possible ways of representing it

What type of
representation?
• Grid map?
• How big the grid?
• Which distance?

• Euclidean
• Manhattan
• ?

• Shall I represent all crossings
and traffic lights?

• How about directions inside
the campus? (shall I use a
different grid size?)

• How about directions inside
the building?

;

Problem specification

• How to specify a planning problem?

• First approach: provide the full state transition graph G (as in the previous
example)

• Most of the times this is not an affordable option due to the combinatorial
nature of the state space:

• Chess board: approx. 1047 states
• We can specify the initial state and the transition

function in some compact form (e.g., set of rules to
generate next states)

• The planning problem “unfolds” as search progresses

• We need an efficient procedure for goal checking

General features of search algorithms

A search algorithm explores the state-transition graph G until it discovers the
desired solution

• feasibility: when a goal node is visited the path that led to that node is
returned

• optimality: when a goal node is visited, if any other
possible path to that node has higher cost the path
that led to that node is returned

Given a state and the path followed to get there, the next node
to explore is chosen using a search strategy

It does not suffice to visit a goal node, the algorithm has to
reconstruct the path it followed to get there: it must keep
a trace of its search

Such a trace can be mapped to a subgraph of G, it is called search graph

how to evaluate a (search) algorithm?

• We can evaluate a search algorithm along different dimensions

• Completeness:
If there is a solution, is the algorithm guaranteed to find it?

• Systematic:
If the state space is finite, will the algorithm visit all reachable state
(so finding a solution if a solution exists?)

• Optimality:
does the strategy find an optimal solution?

• Space complexity:
How much memory is needed to find a solution?

• Time complexity:
How long does it takes?

(The above criteria are used to evaluate a broader class of algorithms)

Soundness

• Optimality: does the returned solution lead to a goal with minimum cost?

Maybe we are not always looking for the optimal solution…

…for some problems, we may look for other features

Soundness: If the algorithm returns a solution, is it compliant with the desired
features specified in the problem formulation?

• Example:

• Feasibility: does the returned solution lead to a goal?

• Optimality: does the returned solution lead to a goal with minimum cost?

(We may need other features from the algorithm e.g., approximation)

Completeness and the systematic property

• If a solution exists, does the algorithm find it?

• Typically shown by proving that the search will/will not visit all states if given
enough time → systematic

• If the state-space is finite, ensuring that no redundant exploration occurs is
sufficient to make the search systematic.

• If the state space is infinite, we can ask if the search is systematic:

• If there is a solution, the search algorithm must report it in finite time

• if the answer is no solution, it’s ok if it does not terminate but …

• … all reachable states must be visited in the limit: as time goes to infinity, all
states are visited – all reachable vertex is explored - (this definition is sound
under the assumption of countable state space)

Visual example

IN

OUT

is there a
route from
IN to OUT?

Visual example

IN

OUTComplete / Systematic

• Searching along multiple trajectories (either concurrently or not), eventually covers all
the reachable space

Visual example

IN

OUT

Not complete / Not systematic

• Searching along a single trajectory, eventually gets stuck in a dead end (or find a solution
if we are lucky)

Space and time complexity

• Asymptotic trend:
• We measure complexity with a function of the input size
• For analysis purposes, the “Big O” notation is convenient:

• Space complexity: how does the amount of memory required by
the search algorithm grows as a function of the problem’s
dimension (worst case)?

• Time complexity: how does the time required by the search
algorithm grows as a function of the problem’s dimension (worst
case)?

• An algorithm that is is better than one that is
• If is an exponential, the algorithm is not efficient

Running example

• To present the various search algorithms, we will use this problem instance as our
running example

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

State-transition graph:

Initial state: A

Desired solution: any path to goal state E

• It might be useful to think it as a map, but keep in mind that this interpretation does not
hold for every instance

Search algorithm definition

• The different search algorithms are substantially characterized by the answer they
provide to the following question:

• The answer is encoded in a set of rules that drives the search and define its type, let’s
start with the simplest one

A F D
Given what I searched so far,
where to search next?
(search strategy)

Depth-First Search (DFS)

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

Depth-First Search (DFS)

A

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

Depth-First Search (DFS)

A

B F

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

Depth-First Search (DFS)

A

B F

C D

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

Depth-First Search (DFS)

A

B F

C D

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

Depth-First Search (DFS)

A

B F

C D

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

• A Depth-First Search (DFS) chooses the deepest node in the search tree
(How to break ties? For now, lexicographic order)

• A dead end stopped the search, DFS seems not complete. Can we fix this?

• Let’s endow our DFS with backtracking: a way to reconsider previously
evaluated decisions

Depth-First Search (DFS)

A

B F

C D

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

• A Depth-First Search (DFS) chooses the deepest node in the search tree
(How to break ties? For now, lexicographic order)

• A dead end stopped the search, DFS seems not complete. Can we fix this?

• Let’s endow our DFS with backtracking: a way to reconsider previously
evaluated decisions

A

Depth-First Search (DFS)

A

B F

C D

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

• A Depth-First Search (DFS) chooses the deepest node in the search tree
(How to break ties? For now, lexicographic order)

• A dead end stopped the search, DFS seems not complete. Can we fix this?

• Let’s endow our DFS with backtracking: a way to reconsider previously
evaluated decisions

A

B F

Depth-First Search (DFS)

A

B F

C D

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

• A Depth-First Search (DFS) chooses the deepest node in the search tree
(How to break ties? For now, lexicographic order)

• A dead end stopped the search, DFS seems not complete. Can we fix this?

• Let’s endow our DFS with backtracking: a way to reconsider previously
evaluated decisions

A

B F

C D

Depth-First Search (DFS)

A

B F

C D

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

• A Depth-First Search (DFS) chooses the deepest node in the search tree
(How to break ties? For now lexicographic order)

• A dead end stopped the search, DFS seems not complete. Can we fix this?

• Let’s endow our DFS with backtracking: a way to reconsider previously
evaluated decisions

A

B F

C D

Depth-First Search (DFS)

A

B F

C D

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

• A Depth-First Search (DFS) chooses the deepest node in the search tree
(How to break ties? For now lexicographic order)

• A dead end stopped the search, DFS seems not complete. Can we fix this?

• Let’s endow our DFS with backtracking: a way to reconsider previously
evaluated decisions

A

B F

C D

F G

Depth-First Search (DFS)

A

B F

C D

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

• A Depth-First Search (DFS) chooses the deepest node in the search tree
(How to break ties? For now lexicographic order)

• A dead end stopped the search, DFS seems not complete. Can we fix this?

• Let’s endow our DFS with backtracking: a way to reconsider previously
evaluated decisions

A

B F

C D

F G

G

Depth-First Search (DFS)

A

B F

C D

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

• A Depth-First Search (DFS) chooses the deepest node in the search tree
(How to break ties? For now lexicographic order)

• A dead end stopped the search, DFS seems not complete. Can we fix this?

• Let’s endow our DFS with backtracking: a way to reconsider previously
evaluated decisions

A

B F

C D

F G

G

E

Solution: (A->B->D->F->G->E)

Depth-First Search (DFS) and Loops

A

B

C D

G

A

B

C G

D

B

C G

D

B

• DFS with loops –> non systematic / complete
• We want to avoid loops on the same branch

(loops are redundant paths)

Depth-First Search (DFS)

• DFS with loops removal and BT is sound and complete (for finite spaces)

• Call the maximum branching factor, i.e., the maximum number of actions
available in a state

• Call the maximum depth of a solution, i.e., the maximum number of actions
in a path

• Space complexity:

• Time complexity:

Breadth-First Search (BFS)

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

Breadth-First Search (BFS)

A

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

Breadth-First Search (BFS)

A

B F

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

Breadth-First Search (BFS)

A

B F

C D
A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

Breadth-First Search (BFS)

A

B F

C D D G
A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

Breadth-First Search (BFS)

A

B F

C D D G
A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

Breadth-First Search (BFS)

A

B F

C D

F G

D G
A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

Breadth-First Search (BFS)

A

B F

C D

F G

D

B G

G
A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

Breadth-First Search (BFS)

A

B F

C D

F G

D

B G

G

D

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

E

Solution: (A->F->G->E)

Breadth-First Search (BFS)

A

B F

C D

F G

D

B G

G

D

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

E

• A Breadth-First Search (BFS) chooses the shallowest node, thus exploring in a level-
by-level fashion

• It has a more conservative behavior and does not need to reconsider decisions

• Call the depth of the shallowest solution (in general)

Solution: (A->F->G->E)

• Space complexity:

• Time complexity:

Redundant paths

• Both DFS and BFS visited some nodes multiple times (avoiding loops prevents
this to happen only within the same branch)

• In general, this does not seem very efficient. Why?

A

B F

C D

F G

D

B G

G

D E

A

B F

C D

F G

G

E

• Idea: discard a newly generated node if already present somewhere on the
tree, we can do this with an enqueued list

DFS with Enqueued List

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

DFS with Enqueued List

A

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

DFS with Enqueued List

A

B F

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

DFS with Enqueued List

A

B F

C D

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

DFS with Enqueued List

A

B F

C D

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

DFS with Enqueued List

A

B F

C D

F

G

E

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

• Node F ha already been “enqueued”
on the tree, by discarding it we
prune a branch of the tree

DFS with Enqueued List

A

B F

C D

F G

G

E

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

• Node F ha already been “enqueued”
on the tree, by discarding it we
prune a branch of the tree

DFS with Enqueued List

A

B F

C D

F G

G

E

E

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

• Node F ha already been “enqueued”
on the tree, by discarding it we
prune a branch of the tree

BFS with Enqueued List

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

BFS with Enqueued List

A

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

BFS with Enqueued List

A

B F
A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

BFS with Enqueued List

A

B F

C D

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

BFS with Enqueued List

A

B F

C D D

B G

G

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

BFS with Enqueued List

A

B F

C D D

B G

G

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

BFS with Enqueued List

A

B F

C D

F G

D

B G

G

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

BFS with Enqueued List

A

B F

C D

F G

D

B G

G

D E

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

Implementation

• The implementation of the previous algorithms is based on two data structures:
• A queue F (Frontier), elements ordered by priority, a selection consumes the

element with highest priority
• A list EL (Enqueued List, nodes that have already been put on the tree)

• The frontier F contains the terminal nodes of all the paths currently under exploration on
the tree

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

• The frontier separates the explored part of the state space from the unexplored part
• In order to reach a new unexplored state, we need to pass from the frontier (separation

property)

A

B F

C D

Implementation

If F is implemented as a
LIFO (Last In First Out)
queue we have a DFS

If F is implemented a
FIFO (First In First Out)
queue we have a BFS

The goal check is
performed as

soon as a node is
generated

Search for the optimal solution

• Now we assume to be interested in the solution with minimum cost (not just any
path to the goal, but the cheapest possible)

• To devise an optimal search algorithm we take the moves from BFS. Why it seems
reasonable to do that?

• We generalize the idea of BFS to that of Uniform Cost Search (UCS)

• BFS proceeds by depth levels, UCS does that by cost levels (as a consequence, if costs
are all equal to some constant BFS and UCS coincide)

• Cost accumulated on a path from the start node to v: (we should include a
dependency on the path, but it will always be clear from the context)

• For now let’s remove the enqueued list and the goal checking as we know it

Uniform Cost Search (UCS)

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

Uniform Cost Search (UCS)

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

A0

Uniform Cost Search (UCS)

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

A0

B5 F6

Uniform Cost Search (UCS)

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

A0

B5 F6

C12 D8

Uniform Cost Search (UCS)

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

A0

B5 F6

C12 D8 D9 G11

Uniform Cost Search (UCS)

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

A0

B5 F6

C12 D8 D9 G11

F11 G12

Uniform Cost Search (UCS)

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

A0

B5 F6

C12 D8 D9 G11

F11 G12 B12 G13

Uniform Cost Search (UCS)

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

A0

B5 F6

C12 D8 D9 G11

F11 G12 B12 G13

G16

Uniform Cost Search (UCS)

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

A0

B5 F6

C12 D8 D9 G11

F11 G12 B12 G13

G16

D15 E14

Uniform Cost Search (UCS)

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

A0

B5 F6

C12 D8 D9 G11

F11 G12 B12 G13

G16

D15 E14

C19

Uniform Cost Search (UCS)

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

A0

B5 F6

C12 D8 D9 G11

F11 G12 B12 G13

G16

D15 E14

C19

Uniform Cost Search (UCS)

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

A0

B5 F6

C12 D8 D9 G11

F11 G12 B12 G13

G16

D15 E14

C19E15

Uniform Cost Search (UCS)

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

A0

B5 F6

C12 D8 D9 G11

F11 G12 B12 G13

G16

D15 E14

C19E15 E16

Uniform Cost Search (UCS)

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

A0

B5 F6

C12 D8 D9 G11

F11 G12 B12 G13

G16

D15 E14

C19E15 E16

Uniform Cost Search (UCS)

• Have we found the optimal path to the goal? In this problem instance, we can answer
yes by inspecting the graph

• How about larger instances? Can we prove optimality?

• Actually, we can prove a stronger claim: every time UCS selects for the first time a node
for expansion, the associated path leading to that node has minimum cost

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

A0

B5 F6

C12 D8 D9 G11

F11 G12 B12 G13

G16

D15 E14

C19E15 E16

Optimality of UCS

X would have been chosen before V, then 1 is false

A

V X

Frontier

Hypotheses:
1. UCS selects from the frontier a node V that has

been generated through a path p
2. p is not the optimal path to V

Given 2 and the frontier separation property, we
know that there must exist a node X on the frontier,
generated through a path p’1 that is on the optimal
path p’≠p to V; let assume p’ = p’1 + p’2

since, from Hp, p’ is optimal

since costs are positive

Optimality of UCS

If when we select for the first time we discover the optimal path, there is no reason to
select the same node a second time: extended list

Every time we select a node for extension:
• If the node is already in the extended list we discard it
• Otherwise we extend it and we put it the extended list

• (Warning: we are not using an enqueued list, it would actually make the search not
sound!)

UCS with extended list

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

UCS with extended list

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

A0

UCS with extended list

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

A0

B5 F6

UCS with extended list

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

A0

B5 F6

C12 D8

UCS with extended list

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

A0

B5 F6

C12 D8 D9 G11

UCS with extended list

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

A0

B5 F6

C12 D8 D9 G11

F11 G12

UCS with extended list

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

A0

B5 F6

C12 D8 D9 G11

F11 G12

UCS with extended list

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

A0

B5 F6

C12 D8 D9 G11

F11 G12

UCS with extended list

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

A0

B5 F6

C12 D8 D9 G11

F11 G12 D15 E14

UCS with extended list

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

A0

B5 F6

C12 D8 D9 G11

F11 G12 D15 E14

UCS with extended list

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

A0

B5 F6

C12 D8 D9 G11

F11 G12 D15 E14

UCS with extended list

• Thanks to the extended list we can prune two branches

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

A0

B5 F6

C12 D8 D9 G11

F11 G12 D15 E14

Implementation

F is implemented as a
cost-sorted (increasing)
list queue

The goal check is done when
the node is selected (not
when is generated)

• Question: is this search informed?

Discrete Search Problems: 8-Puzzle

• States: location of each digits in the eight tiles + blank one

• Initial State

• Goal State

• Actions: Left, Right, Up, Down

• Transition: given a state and an action, the resulting board

• Goal Test: if the states are equal to the goal state

• Cost: each movement costs 1, the lowest number of tile move the
lowest the cost

Discrete Search Problems: 8-Puzzle

• Question: are all states equal?

7 2 4

5 6

8 3 1

1 2 3

4 5

8 7 6

1 2 3

4 5 6

8 7

Example: going home from the CS department with METRO

The cost to reach the two nodes starting from the initial node is the same; but
are the two nodes equally promising to reach the goal?

Informed vs non-informed search

• Besides its own rules, any search algorithm decides where to search next by leveraging
some knowledge

• Non-informed search uses only knowledge specified at problem-definition time (e.g.,
goal and start nodes, edge costs), just like we saw in the previous examples

• An informed search might go beyond such knowledge

• Idea: using an estimate of how far a given node is from the goal

• Such an estimate is often called a heuristic

Estimate of the cost of the optimal path from node v to the goal:

A*

• The informed version of UCS is called A*

• Very popular search algorithm

• It was born in the early days of mobile robotics when, in 1968, Nilsson, Hart, and
Raphael had to face a practical problem with Shakey (one of the ancestors of today’s
mobile robots)

SRI RoboticsWikipedia

A*

• The idea behind A* is simple: perform a UCS, but instead of considering accumulated
costs consider the following:

Cost of the minimum path from n to the goal

• To guarantee that the search is sound and complete we need to require that the
heuristic is admissible: it is an optimistic estimate or, more formally:

Cost accumulated
on the path to n
(“cost-to-come”)

Heuristic
(“cost-to-go”)

• If the heuristic is not admissible we might discard a path that could actually turn out
to be better that the best candidate found so far

A*

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

A*

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

A
0+10=10

A*

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

A
0+10=10

B
5+7=12

F
6+7=13

A*

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

A
0+10=10

B
5+7=12

F
6+7=13

C
5+7+1=13

D
5+3+3=11

A*

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

A
0+10=10

B
5+7=12

F
6+7=13

C
5+7+1=13

D
5+3+3=11

F
5+3+3+7=18

G
5+3+4+2=14

A*

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

A
0+10=10

B
5+7=12

F
6+7=13

C
5+7+1=13

D
5+3+3=11

F
5+3+3+7=18

G
5+3+4+2=14

A*

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

A
0+10=10

B
5+7=12

F
6+7=13

C
5+7+1=13

D
5+3+3=11

D
6+3+3=12

G
6+5+2=13

F
5+3+3+7=18

G
5+3+4+2=14

A*

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

A
0+10=10

B
5+7=12

F
6+7=13

C
5+7+1=13

D
5+3+3=11

D
6+3+3=12

G
6+5+2=13

F
5+3+3+7=18

G
5+3+4+2=14

A*

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

A
0+10=10

B
5+7=12

F
6+7=13

C
5+7+1=13

D
5+3+3=11

D
6+3+3=12

G
6+5+2=13

F
5+3+3+7=18

G
5+3+4+2=14

D
6+5+4+3=18

E
6+5+3+0=14

A*

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

A
0+10=10

B
5+7=12

F
6+7=13

C
5+7+1=13

D
5+3+3=11

D
6+3+3=12

G
6+5+2=13

F
5+3+3+7=18

G
5+3+4+2=14

D
6+5+4+3=18

E
6+5+3+0=14

A*

A

C

G

D

F

B

E

7

5

6

3

3
4

5

100

• Problem: if we work with an extended list, admissibility is not enough!

• Let’s consider this “pathological" instance:

A*

A

C

G

D

F

B

E

7

5

6

3

3
4

5

100

A
0+10=10

• Problem: if we work with an extended list, admissibility is not enough!

• Let’s consider this “pathological" instance:

A*

A

C

G

D

F

B

E

7

5

6

3

3
4

5

100

A
0+10=10

B
5+0=5

F
6+100=106

• Problem: if we work with an extended list, admissibility is not enough!

• Let’s consider this “pathological" instance:

A*

A

C

G

D

F

B

E

7

5

6

3

3
4

5

100

A
0+10=10

B
5+0=5

F
6+100=106

C
5+7+1=13

D
5+3+0=8

• Problem: if we work with an extended list, admissibility is not enough!

• Let’s consider this “pathological" instance:

A*

A

C

G

D

F

B

E

7

5

6

3

3
4

5

100

A
0+10=10

B
5+0=5

F
6+100=106

C
5+7+1=13

D
5+3+0=8

F
5+3+3+100=111

G
5+3+4+0=12

• Problem: if we work with an extended list, admissibility is not enough!

• Let’s consider this “pathological" instance:

A*

A

C

G

D

F

B

E

7

5

6

3

3
4

5

100

A
0+10=10

B
5+0=5

F
6+100=106

C
5+7+1=13

D
5+3+0=8

F
5+3+3+100=111

G
5+3+4+0=12

E
5+3+4+100+0=112

• Problem: if we work with an extended list, admissibility is not enough!

• Let’s consider this “pathological" instance:

A*

A

C

G

D

F

B

E

7

5

6

3

3
4

5

100

A
0+10=10

B
5+0=5

F
6+100=106

C
5+7+1=13

D
5+3+0=8

F
5+3+3+100=111

G
5+3+4+0=12

E
5+3+4+100+0=112

• Problem: if we work with an extended list, admissibility is not enough!

• Let’s consider this “pathological" instance:

A*

A

C

G

D

F

B

E

7

5

6

3

3
4

5

100

A
0+10=10

B
5+0=5

F
6+100=106

C
5+7+1=13

D
5+3+0=8

D
6+3+3=12

G
6+5+2=13

F
5+3+3+100=111

G
5+3+4+0=12

E
5+3+4+100+0=112

• Problem: if we work with an extended list, admissibility is not enough!

• Let’s consider this “pathological" instance:

A*

A

C

G

D

F

B

E

7

5

6

3

3
4

5

100

A
0+10=10

B
5+0=5

F
6+100=106

C
5+7+1=13

D
5+3+0=8

D
6+3+3=12

G
6+5+2=13

F
5+3+3+100=111

G
5+3+4+0=12

E
5+3+4+100+0=112

• Problem: if we work with an extended list, admissibility is not enough!

• Let’s consider this “pathological" instance:

A*

A

C

G

D

F

B

E

7

5

6

3

3
4

5

100

A
0+10=10

B
5+0=5

F
6+100=106

C
5+7+1=13

D
5+3+0=8

D
6+3+3=12

G
6+5+2=13

F
5+3+3+100=111

G
5+3+4+0=12

E
5+3+4+100+0=112

• Problem: if we work with an extended list, admissibility is not enough!

• Let’s consider this “pathological" instance:

A*

A

C

G

D

F

B

E

7

5

6

3

3
4

5

100

A
0+10=10

B
5+0=5

F
6+100=106

C
5+7+1=13

D
5+3+0=8

D
6+3+3=12

G
6+5+2=13

F
5+3+3+100=111

G
5+3+4+0=12

E
5+3+4+100+0=112

• Problem: if we work with an extended list, admissibility is not enough!

• Let’s consider this “pathological" instance:

A*

A

C

G

D

F

B

E

7

5

6

3

3
4

5

100

A
0+10=10

B
5+0=5

F
6+100=106

C
5+7+1=13

D
5+3+0=8

D
6+3+3=12

G
6+5+2=13

F
5+3+3+100=111

G
5+3+4+0=12

E
5+3+4+100+0=112

• Problem: if we work with an extended list, admissibility is not enough!

• Let’s consider this “pathological" instance:

• We need to require a stronger property: consistency

• For any connected nodes u and v:

A*

v

u

goal

• It’s a sort of triangle inequality, let’s reconsider our pathological instance:

A

C

G

D

F

B

E

7

5

6

3

3
4

5

100

Optimality of A*

A

G X

Frontier

A* selected G:

f is non-decreasing:

consistency

f is non-decreasing along any search trajectory

Hypotheses:
1. A* selects from the frontier a node G that

has been generated through a path p
2. p is not the optimal path to G

Given 2 and the frontier separation property, we
know that there must exist a node X on the
frontier that is on a better path to G

When A* selects a node for expansion, it
discovers the optimal path to that node

Building good heuristics

• A “larger” heuristic is better usually than a smaller one. The trivial heuristic is h(v) = 0.

• The “larger heuristics are better” principle is not a methodology to define a good
heuristic

• Such a task, seems to be rather complex: heuristics deeply leverage the inner structure
of a problem and have to satisfy a number of constraints (admissibility, consistency,
efficiency) whose guarantee is not straightforward

• When we adopted the straight-line distance in our route finding examples, we were sure
it was a good heuristic

• Would it be possible to generalize what we did with the straight-line distance to define a
method to compute heuristics for a problem?

• Good news: the answer is yes

Evaluating heuristics

• How to evaluate if an heuristic is good?

Trivial
heuristic

Trivial
problem

We’d like to push
this point to the

right. Why?

• A* will expand all nodes v such that:

• If, for any node v

then A* with h2 will not expand more nodes than A* with h1, in general h2 is better
(provided that is consistent and can be computed by an efficient algorithm)

• If we have two consistent heuristics h1 and h2 we can define

Relaxed problems

• Given a problem P, a relaxation of P is an easier version of P where some constraints
have been dropped

• In our route finding problems removing the constraint that movements should be over
roads (links) means that some costs pass from an infinite value to a finite one (the
straight-line distance)

Costs in the
relaxation

Costs in the
original problem

Original
problem

Relaxed
problem

Removing constraints

A

C

G

D

F

B

E

7

5

6

3

3
4

5

3

7

Relaxed problems

• Idea:

Apply A* to every
node and get

Define a
relaxation of P:

Set in the
original problem and run A*

Path costs are optimal

From our idea

From the definition of relaxation

h is consistent

• We can easily define a problem relaxation, it’s just matter of removing
constraints/rewriting costs

• But what happens to soundness and completeness of A*?

Heuristics example: 8-puzzle

• How to evaluate if an heuristic is good?

• ℎ1(𝑣) the number of misplaced tiles

• If we have two consistent heuristics h1 and h2 we can define

• ℎ2(𝑣) sum of distances of tiles from their goal destination
(Manhattan Distance)

• ℎ1 𝑣 = 8, ℎ2 𝑣 = 18, ℎ∗ 𝑣 = 26

• Both heuristics are admissible; the second one is “higher”, so is close to the
actual cost of the optimal path. So it is a better heuristic.

Heuristics example: 8-puzzle

• ℎ1(𝑣) the number of misplaced tiles

• ℎ2(𝑣) sum of distances of tiles from their goal destination
(Manhattan Distance)

• How to evaluate an heuristic? Compute several instances of the problem and compute the
effective branching factor
(the number of branches expanded by the search strategy during search)
In the table we tested 1000+ instances of the problem.

• ℎ2(𝑣) dominates ℎ1(𝑣) and is 50k better wrt IDS with d=12

Heuristics example: 8-puzzle

• How to evaluate if an heuristic is good?

Remember that the relaxed problem adds edges to the state space
• any optimal solution in the original problem is, by definition,

also a solution in the relaxed problem;
• however the relaxed problem may have better solutions if the added edges provide

short cuts
Hence, the cost of an optimal solution to a relaxed problem is an admissible heuristic
for the original problem.

Furthermore, because the derived heuristic is an exact cost for the relaxed problem,
it must obey the triangle inequality and is therefore consistent

Heuristics example: 8-puzzle

• How to evaluate if an heuristic is good?

How to generate heuristics? We can remove rules / costraints

8:puzzle rules:
A tile can move from square A to square B if:
A is horizontally or vertically adjacent to B and B is blank.

we can generate three relaxed problems by removing one or both of the conditions:
(a) A tile can move from square A to square B if A is adjacent to B.
(b) A tile can move from square A to square B if B is blank.
(c) A tile can move from square A to square B.

References

• Russel S., Norvig P., Artificial Intelligence, a Modern Approach, III ED

• LaValle, SM., Planning Algorithms
http://lavalle.pl/planning/

• https://qiao.github.io/PathFinding.js/visual/

• https://www.redblobgames.com/pathfinding/a-
star/introduction.html

http://lavalle.pl/planning/
https://qiao.github.io/PathFinding.js/visual/
https://www.redblobgames.com/pathfinding/a-star/introduction.html
https://www.redblobgames.com/pathfinding/a-star/introduction.html

Sistemi Intelligenti Avanzati
Corso di Laurea in Informatica, A.A. 2024-2025

Università degli Studi di Milano

Search algorithms for planning
Matteo Luperto

Dipartimento di Informatica
matteo.luperto@unimi.it

mailto:matteo.luperto@unimi.it

	Slide 1
	Slide 2: Search
	Slide 3: Planning
	Slide 4: Search algorithms for Planning
	Slide 5: Discrete Search Problems: 8-Puzzle
	Slide 6: Discrete Search Problems: 8-Puzzle
	Slide 7: Search example
	Slide 8: State-based problem formulation
	Slide 9: Formally describing the desired solution
	Slide 10: Problem example
	Slide 11: Example: going home from the Celoria 18 with METRO
	Slide 12: Example: going home from Celoria 18 with METRO
	Slide 13: Example: going home from Celoria 18 with METRO
	Slide 14: Problem example
	Slide 15: Problem Example
	Slide 16: Problem Example
	Slide 17: A solution
	Slide 18: And here? Changing a few tiles, different solution
	Slide 19: One problem, many possible ways of representing it
	Slide 20: One problem, many possible ways of representing it
	Slide 21: One problem, many possible ways of representing it
	Slide 22: Problem specification
	Slide 23: General features of search algorithms
	Slide 24: how to evaluate a (search) algorithm?
	Slide 25: Soundness
	Slide 26: Completeness and the systematic property
	Slide 27: Visual example
	Slide 28: Visual example
	Slide 29: Visual example
	Slide 30: Space and time complexity
	Slide 31: Running example
	Slide 32: Search algorithm definition
	Slide 33: Depth-First Search (DFS)
	Slide 34: Depth-First Search (DFS)
	Slide 35: Depth-First Search (DFS)
	Slide 36: Depth-First Search (DFS)
	Slide 37: Depth-First Search (DFS)
	Slide 38: Depth-First Search (DFS)
	Slide 39: Depth-First Search (DFS)
	Slide 40: Depth-First Search (DFS)
	Slide 41: Depth-First Search (DFS)
	Slide 42: Depth-First Search (DFS)
	Slide 43: Depth-First Search (DFS)
	Slide 44: Depth-First Search (DFS)
	Slide 45: Depth-First Search (DFS)
	Slide 46: Depth-First Search (DFS) and Loops
	Slide 47: Depth-First Search (DFS)
	Slide 48: Breadth-First Search (BFS)
	Slide 49: Breadth-First Search (BFS)
	Slide 50: Breadth-First Search (BFS)
	Slide 51: Breadth-First Search (BFS)
	Slide 52: Breadth-First Search (BFS)
	Slide 53: Breadth-First Search (BFS)
	Slide 54: Breadth-First Search (BFS)
	Slide 55: Breadth-First Search (BFS)
	Slide 56: Breadth-First Search (BFS)
	Slide 57: Breadth-First Search (BFS)
	Slide 58: Redundant paths
	Slide 59: DFS with Enqueued List
	Slide 60: DFS with Enqueued List
	Slide 61: DFS with Enqueued List
	Slide 62: DFS with Enqueued List
	Slide 63: DFS with Enqueued List
	Slide 64: DFS with Enqueued List
	Slide 65: DFS with Enqueued List
	Slide 66: DFS with Enqueued List
	Slide 67: BFS with Enqueued List
	Slide 68: BFS with Enqueued List
	Slide 69: BFS with Enqueued List
	Slide 70: BFS with Enqueued List
	Slide 71: BFS with Enqueued List
	Slide 72: BFS with Enqueued List
	Slide 73: BFS with Enqueued List
	Slide 74: BFS with Enqueued List
	Slide 75: Implementation
	Slide 76: Implementation
	Slide 80: Search for the optimal solution
	Slide 81: Uniform Cost Search (UCS)
	Slide 82: Uniform Cost Search (UCS)
	Slide 83: Uniform Cost Search (UCS)
	Slide 84: Uniform Cost Search (UCS)
	Slide 85: Uniform Cost Search (UCS)
	Slide 86: Uniform Cost Search (UCS)
	Slide 87: Uniform Cost Search (UCS)
	Slide 88: Uniform Cost Search (UCS)
	Slide 89: Uniform Cost Search (UCS)
	Slide 90: Uniform Cost Search (UCS)
	Slide 91: Uniform Cost Search (UCS)
	Slide 92: Uniform Cost Search (UCS)
	Slide 93: Uniform Cost Search (UCS)
	Slide 94: Uniform Cost Search (UCS)
	Slide 95: Uniform Cost Search (UCS)
	Slide 96: Optimality of UCS
	Slide 97: Optimality of UCS
	Slide 98: UCS with extended list
	Slide 99: UCS with extended list
	Slide 100: UCS with extended list
	Slide 101: UCS with extended list
	Slide 102: UCS with extended list
	Slide 103: UCS with extended list
	Slide 104: UCS with extended list
	Slide 105: UCS with extended list
	Slide 106: UCS with extended list
	Slide 107: UCS with extended list
	Slide 108: UCS with extended list
	Slide 109: UCS with extended list
	Slide 110: Implementation
	Slide 112: Discrete Search Problems: 8-Puzzle
	Slide 113: Discrete Search Problems: 8-Puzzle
	Slide 114: Example: going home from the CS department with METRO
	Slide 115: Informed vs non-informed search
	Slide 116: A*
	Slide 117: A*
	Slide 118: A*
	Slide 119: A*
	Slide 120: A*
	Slide 121: A*
	Slide 122: A*
	Slide 123: A*
	Slide 124: A*
	Slide 125: A*
	Slide 126: A*
	Slide 127: A*
	Slide 128: A*
	Slide 129: A*
	Slide 130: A*
	Slide 131: A*
	Slide 132: A*
	Slide 133: A*
	Slide 134: A*
	Slide 135: A*
	Slide 136: A*
	Slide 137: A*
	Slide 138: A*
	Slide 139: A*
	Slide 140: A*
	Slide 141: Optimality of A*
	Slide 142: Building good heuristics
	Slide 143: Evaluating heuristics
	Slide 144: Relaxed problems
	Slide 145: Relaxed problems
	Slide 146: Heuristics example: 8-puzzle
	Slide 147: Heuristics example: 8-puzzle
	Slide 148: Heuristics example: 8-puzzle
	Slide 149: Heuristics example: 8-puzzle
	Slide 150: References
	Slide 151

